User Manual

VDM1000 Shutter Driver

14-0035
Version 2.20
2013

For information regarding applicable intellectual property, please visit www.uniblitz.com/patents.

Information in this publication supersedes that in all previously published material. Due to our ongoing development program, Vincent Associates reserves the right to discontinue or change specifications or designs, at any time, without incurring any obligation.

Carries CE/UL/CSA certifications

Version 2.20

2013

Vincent Associates, a Division of VA, Inc.
803 Linden Ave.
Rochester, NY 14625
Tel: 585-385-5930
Fax: 585-385-6004

UNIBLITZ $^{\circledR}$, N-CAS $^{\circledR}$ and VINCENT ASSOCIATES ${ }^{\circledR}$ are registered trademarks of VA, Inc.

Printed in the U.S.A.

Warranty

LIMITED PRODUCT WARRANTY: All Products manufactured by VINCENT
ASSOCIATES ${ }^{\circledR}$ (MANUFACTURER) are warranted to meet published specifications and to be free of defects in materials and workmanship as defined in the specifications for 365 days - one year - (WARRANTY PERIOD) from the date of original shipment of the product. DSS series shutters are additionally warranted to achieve two million cycles within the WARRANTY PERIOD (as defined in the CYCLE WARRANTY CRITERION). MANUFACTURER will, at its own option within the WARRANTY PERIOD, repair or replace without charge any listed item discovered to be defective excepting transportation charges. Burned out or otherwise damaged actuator coils are not covered under this warranty. Any defective product returned to the MANUFACTURER must follow the RETURN MATERIAL AUTHORIZATION PROCEDURE as defined below. This warranty does not extend to cover damage resulting from alteration, misuse, negligence, abuse, normal wear and tear, or accident. The MANUFACTURER will consider the return of unused equipment if returned within 30 days from the original date of shipment, subject to a 20% restocking charge. This offer does not apply to used or damaged equipment. This warranty extends only to the original purchase and is not available to any third party, including any purchaser assemblies or other Products of which the goods may become component equipment.
CYCLE WARRANTY CRITERION: One "cycle" is considered one open and one closure of the shutter. DSS Shutter must be operated with the ED12DSS driver or equivalent H-Bridge type shutter driver circuit at +10.7 VDC across the actuator coil for the specified duration. DSS Shutter must be operated within the defined environmental, electrical and mechanical specifications as listed on the device's data sheet. After one year (WARRANTY PERIOD), the cycle warranty is null and void. If returned, the device must be accompanied by a written statement indicating the approximate number of cycles contained on the device, include all parameters to which the shutter was operated and follow the RETURN MATERIAL AUTHORIZATION PROCEDURE as defined below.
RETURN MATERIAL AUTHORIZATION PROCEDURE: MANUFACTURER will only accept returned Products from customers that have obtained an RMA (Return Material Authorization) number from the MANUFACTURER. The customer must also include an itemized statement of defect(s). The Product will then be evaluated per the MANUFACTURER'S standard repair guidelines. Any Product which has been returned to the MANUFACTURER but which is found to meet the applicable specifications and not defective in materials and workmanship shall be subject to the MANUFACTURER's standard evaluation charge. The MANUFACTURER assumes no liability for customer returned material.
LIMIT OF LIABILITY: The buyer's exclusive remedy and the limit of MANUFACTURER'S liability for any loss whatsoever shall not exceed the purchase price paid by the buyer for the goods to which a claim is made. MANUFACTURER does not give any implied warranties of merchantability, fitness for a particular purpose, or of any other nature in connection with the sale of any Products.

TABLE OF CONTENTS

WARRANTY 2
TABLE OF CONTENTS 3
GENERAL SAFETY SUMMARY 5
Injury Precautions 5
Product Damage Precautions 6
Safety Terms and Symbols 7
PREFACE 9
GETTING STARTED 9
Features 9
Introduction 11
Start Up 12
Initial Operation and Testing 13
OPERATOR CONTROLS 15
VDM1000 Front Panel Operator Controls 15
VDM1000 Rear Panel Operator Controls 17
VDM1000 Right Hand Panel Operator Controls 19
OPERATING BASICS 24
Function Switches 24
RS-232C Operation 25
Daisy-Chain Configuration 26
RS-232 Test Program 28
Trigger Cautions and Trouble Shooting Tips 30
Dimensions 31
Maintenance 33
General Care 33
Inspection and Cleaning 33
Inspection - Exterior 33
Cleaning Procedure - Exterior 34
Inspection - Interior 34
Cleaning Procedure - Interior 34
SPECIFICATIONS 35
System Characteristics 35
External Input Characteristics 36
External Output Characteristics 37
General Characteristics 39
Applicable Certifications (CE/UL/CSA) 43
INDEX 44

List of Tables

Table 1: 5-Pin SwitchCraft Female Receptacle Pin-Out 17
Table 2: VDM1000 Octal Switch Pulse Duration Settings 19
Table 3: FUNCTION DIP Switch Settings 20
Table 4: Function \& Octal Switch Settings for All Available Shutter Series 21
Table 5: VDM1000 RS-232C Pin-Outs 25
List of Figures
Figure 1: VDM1000 Front Panel Operator Controls 16
Figure 2: VDM1000 Rear Panel Operator Controls and I/O 18
Figure 3: VDM1000 Right Hand Panel Operator Controls 22
Figure 4: VDM1000 Shutter Driver Daisy-Chain Cable Configuration 27
Figure 5: Overall VDM1000 Dimensions 31
Figure 6: Overall PS36 Power Supply Dimensions 32

General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use the product only as specified.
Only qualified personnel should perform service procedures.

Injury Precautions

- Use included Power Supply (PS36) and proper Power Cord - To avoid fire hazard, use only the power cord supplied with this product.
- Avoid Electric Overload - To avoid electrical shock or fire hazard, do not apply a voltage to a terminal that is outside the range specified for that terminal.
- Avoid Electric Shock - To avoid injury or loss of life, do not connect or disconnect line cord while it is connected to the line voltage.
- Ground the Product - This product is grounded through the VDM1000 DC input connector and when using the PS36 is grounded through the grounding conductor of the PS36 power cord. To avoid electrical shock, the grounding connector must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded. DO NOT DEFEAT THE GROUND CONNECTION ON THE PS36 SUPPLIED LINE CORD.
- Access to On/Off Switch - Due to the position of the unit's power switch at the rear panel, do not position the unit such that it is difficult to operate the on/off switch.
- Do Not Operate Without Cover - To avoid electric shock or fire hazard, do not operate this product with the cover removed.
- Use Proper Fuse - To avoid fire hazard, use only the fuse type and rating specified for this product.
- Do Not operate in Wet/Damp Conditions - To avoid electric shock, do not operate this product in wet or damp conditions.
- Do Not Operate in an Explosive Atmosphere - To avoid injury or fire hazard, do not operate this product in an explosive atmosphere.

Product Damage Precautions

- Use Proper Power Source - Do not operate this product from a power source that applies more than the voltage specified. It is recommended to use the PS36 or equivalent DC Power Supply.
- Provide Proper Ventilation - To prevent product overheating, provide proper ventilation.
- Do Not Operate with Suspected Failures - If you suspect there is damage to this product, have it inspected by qualified service personnel.

Safety Terms and Symbols

These terms appear in this manual

Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION

Caution statements identify conditions or practices that could result in damage to this product or other property.

These symbols appear on the equipment

ATTENTION - Refer to user manual.

Direct Current - (VDC) Input Only

Avertissements de sécurité

Ces termes et illustrations apparaissent dans le manuel.

Le titre AVERTISSEMENT indique une situation où, si l'avertissement est ignoré, de graves blessures ou la mort peuvent en resulter.

PRUDENCE

Le titre PRUDENCE indique une situation où, si l'on ne fait pas attention, cela risqué d'entraîner des dommages à l'équipement ou à d'autres propriétés.

Ces symboles sont présents sur l'équipement

ATTENTION - Se référer au manuel d'utilisation.

Courant Direct - Tension Continue seulement (VDC) à l'entrée.

Preface

This Manual provides information for the VDM1000 Shutter Driver. The manual contains the following chapters:

- Getting Started contains a brief product description, information needed to power on the driver and a brief procedure to verify that it functions.
- Operator Controls provide an outline of the panel control functions and locations at the front and rear panels. This also includes the location and function of the input/output signals.
- Operating Basics gives further details to the operational features of the controller.
- Specifications are described for all input/output levels including other pertinent details and information required for the RS-232C interface.
- Index contains a full index.

What follows is the complete operator's manual for the UNIBLITZ ${ }^{\circledR}$ N-CAS ${ }^{\circledR}$ VDM1000 Shutter Driver. Please read this manual completely before operating the unit. Due to the construction of this unit, Vincent Associates recommends that the unit be returned to the manufacturer for repair. There are no user-serviceable parts inside.

Getting Started

Features

- CE/UL/CSA certifications.
- Microprocessor controlled
- RoHS Compliant
- Operates $\mathbf{N}-\mathbf{C A S}{ }^{\circledR}$ shutters purchased in a bi-stable or uni-stable configuration.
- 5-pin Female SwitchCraft locking shutter interface connector.
- 510A shutter interconnect cable included for NS series shutters. (5-pin male SwitchCraft to 5-pin female SwitchCraft, 3 meters)
- Operates existing UNIBLITZ shutters such as CS, LS, VS and XRS series. The optional 710A interconnect cable is required when connecting these shutter types. This cable is not included and can be purchased separately.
- Normally open or normally closed shutter operation in uni-stable mode.
- Indicators for power, driver, and SYNC status.
- Exposure determined by external pulse (BNC, TTL) or switch contact closure to the PULSE INPUT BNC.
- SYNC OUTPUT BNC can be selected for either active-low or active-high operation.
- PULSE INPUT BNC can be selected for either active-low or active-high operation.
- RS-232C input and output connection accessible via dual RJ45 jack.
- Input and output controllable via RS-232C interface.
- RS-232C input addressable via 8 selectable addresses.
- Up to 8 units can be controlled independently from one computer serial port.
- Units can be easily daisy-chained together with optional RJ45 cable, Model 810RJ (not included).
- Status of electronic synchronization available from SYNC OUTPUT BNC (TTL) and can be read back from RS-232C interface.
- Synchronization system can be disabled via user-selectable FUNCTION switch.
- Selectable pulse energy for operation of 35 mm and larger aperture shutter devices.
- Selectable pulse high current duration for specific shutters via 8-position octal switch.
- Aluminum enclosure with air slots for ventilation.
- Internal fuse protection for all DC output voltages (including shutter).
- Operates on +36 VDC , fuse protected.
- Power input to controller via 2.0 mm DC jack.
- +36V DC, 1.83A, external power supply, Model PS36 (included). Power input to supply $100-240$ VAC $50 / 60 \mathrm{~Hz}$. Power supply is UL/CE certified.
- Size (HWD): $1.96 \times 4.34 \times 7.23 \mathrm{in}$. ($49.9 \times 110.3 \times 183.6 \mathrm{~mm}$) controller
- Size (HWD): $1.80 \times 3.00 \times 5.8 \mathrm{in}$. ($45.7 \times 76.2 \times 147.3 \mathrm{~mm}$) power supply
- Weight (controller): $1.2 \mathrm{lbs}(0.54 \mathrm{~kg})$
- Weight (power supply): $1.1 \mathrm{lbs}(0.50 \mathrm{~kg})$

Introduction

The VDM1000 is the optimal driver for the new UNIBLITZ ${ }^{\circledR}$ N-CAS ${ }^{\circledR}$, NS series shutters. It carries CE/UL/CSA certifications and conforms to the listed directives and standards. Please see the Specifications section elsewhere in this document for specific information. The driver has user-selectable FUNCTION switches allowing it to handle a variety of shutter configurations. It will operate an N-CAS shutter configured as uni-stable (normally open or normally closed), or bi-stable where no power is required to hold the shutter open or closed. In addition to this capability, the N-CAS drive circuit can be disabled, allowing the VDM1000 to operate standard CS, LS, VS and XRS series shutters.

Simple and straightforward Front Panel controls allow the VDM1000 to be easy to use and configure. LED indicators indicate shutter status at a glance. A toggle switch allows easy selection of normally-open or normally-closed operation. Addressable RS-232C control is also available via the dual 8-pin RJ45 jack. Daisy-chain multiple VDM1000 units together by connecting the RJ45 output of one controller to the RJ45 input of the next controller in the chain (using an 810RJ cable). The unit's specific address in the chain is selected via the ADDRESS rotary octal switch allowing up to eight units to be individually controlled via one computer serial port.
The Rear Panel contains BNC connectors for PULSE INPUT as well as an output for the electronic synchronization, SYNC OUTPUT. The BNC connectors allow for quick termination of TTL command signals. Power is supplied to the VDM1000 via 2.0 mm male jack from the plug of the external power supply, center terminal is positive. The PS36 Power supply is included with the VDM1000 to provide power, however, an equivalent user-supplied power supply can also be used. The Shutter output is a female 5-pin push-lock SwitchCraft connector. A bank of user-selectable FUNCTION switches is accessible on the right side panel of the enclosure. These switches will set the VDM1000 in a number of configurations to allow a number of shutter types to be driven. The right-side panel octal switch establishes pulse duration, and the FUNCTION switches control and pre-set the unit for the specific shutter used.

A 3-meter, 5-pin female to 5-pin male SwitchCraft push-lock shutter interconnect cable, Model $\mathbf{5 1 0} \mathrm{A}$, is also included with each unit.

Start Up

After unpacking your unit inspect for any defects. If upon inspection a problem is found, or a part (or parts) is missing, notify Vincent Associates immediately.

```
CAUTION
```


Veuillez vous assurer que le cordon d'alimentation utilisé est celui qui est fourni avec le bloc d'alimentation PS36. Notez que des cordons d'alimentation sont fournis pour une utilisation Domestique (USA, Canada) ou Européenne (EU). Si le cordon d'alimentation EU n'est pas compatible avec votre prise murale, veuillez utiliser une cordon classé pour tension de 230VAC, minimum 1A, dont la surface de conducteur minimum est $0.75 \mathrm{~mm}^{2}$. La longueur du cordon d'alimentation ne doit pas dépasser 3 mètres.

After the initial inspection the unit is ready to use. To properly install and power on the VDM1000, perform this procedure:

1. Verify that the VDM1000 power rocker switch is selected to the " 0 " position and the line end of the PS36 power supply's line cord is not connected to the AC line.
2. Connect the 2 mm power plug of the PS36 power supply to the DC power input of the VDM1000. Be sure the AC cord is inserted completely into the AC module receptacle of the PS36 power supply.
3. Connect the power end of the line cord to the AC line.
4. Power unit ON by rocking the power switch to the " 1 " position. Power LED indicator will illuminate.
5. Due to the position of the unit's power switch at the rear panel, do not position the unit such that it is difficult to operate the On/Off switch.

Initial Operation and Testing

The VDM1000 will operate from the supplied +36 VDC , PS36 power supply or equivalent usersupplied power supply. The PS36 will operate from 100 to $240 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$, this is automatically selected.

PRUDENCE

Veuillez vous assurer que l'interrupteur d'alimentation du VDM1000 est en position Éteinte (OFF) avant de brancher le bloc d'alimentation PS36 à la prise secteur AC. Il faut brancher le cordon d'alimentation à l'appareil avant de le raccorder à la source de tension.

See Start Up section for connection to power source. Insert the 5-pin male SwitchCraft connector of $\mathbf{5 1 0 A}$ shutter interconnect cable into 5-pin female SwitchCraft receptacle at rear of unit labeled SHUTTER. Connect the 5-pin female connector of the Model 510A shutter interconnect cable to 5-pin male connector on shutter to be driven.

Place POWER switch to the ON " 1 " position, the POWER LED will illuminate. Place the N.O./N.C. switch to the N.O. position. The shutter will open and remain open until the switch is returned to the N.C. position. The DRIVER LED will illuminate when this switch is in the N.O. position. The operation of the shutter described assumes that the FUNCTION switches are set up for the proper shutter used, uni-stable, bi-stable or CS, LS, VS or XRS types. Please see FUNCTION Select under GENERAL CHARACTERISTICS.

All UNIBLITZ drivers provide the circuitry necessary to support shutters equipped with the solid state synchronization option. Simply plug the shutter-interconnect cable into the driver. If your shutter is equipped with this option, the yellow LED, labeled SYNC, will illuminate when the shutter is in the open position. In addition, the SYNC OUTPUT BNC will change to the active state when the shutter is open. The absence of the solid state synchronization option will only inhibit the operation of the SYNC output and SYNC LED. The remainder of the VDM1000 systems will not be affected. In addition, the synchronization system can be disabled by sliding the FUNCTION switch \mathbf{E} to the upper position.
See SPECIFICATIONS and OPERATOR CONTROLS for additional operational information concerning other systems of the VDM1000.

Should the shutter and/or control not respond as described previously, be sure the DC power plug from the PS36 power supply is properly seated into the DC power input jack and connection to
the shutter are made properly to the rear of the controller. Be sure the line cord is installed into the PS36 input power receptacle.

CAUTION

PRUDENCE

Turn off the unit and remove the plug from the AC source before removing the dc power plug from the VDM1000

Veuillez éteindre l'appareil en mettant l'interrupteur de tension è la position étenite (OFF), et retirer la fiche de la source de tension AC avant de retirer la fiche de tension DC du côté du VDM1000.

Be advised, all fuses are internal to the unit. It is recommended that if a fuse blows, to return the unit for fuse replacement. Also, particular shutter units respond to different minimum pulse widths. For example, a standard NS25S uni-stable shutter has a minimum exposure pulse of 13 ms . If the exposure PULSE INPUT is set for an exposure pulse width less than 13 ms , the shutter may not open fully. If the unit still does not operate properly, please notify Vincent Associates immediately.

Operator Controls

VDM1000 Front Panel Operator Controls

Please Refer to Figure 1.

1. RS-232C Dual RJ45 female jack.

Provides access to the VDM1000 RS-232C interface allowing the user to control functions via commands sent from a computer serial COM port. The INPUT jack accepts commands directly from a computer's serial port or from another VDM1000 in the daisy-chain. The OUTPUT jack allows the controller to send commands to the next controller in the daisychain. Synchronization read back is only available when a single unit (talk/listen) is being controlled through the RS-232C input. If multiple units are daisy-chained, only commands sent will operate the chained devices (listen only).
2. DRIVER LED indicator.

A green LED indicating when the internal shutter driver circuit input has an active signal present.
3. SYNC LED indicator.

Indicates status of Solid State Synchronization output. This yellow LED is illuminated when shutter's electronic sync is activated. Functions only if the shutter used is equipped with the Solid State Synchronization system.
4. POWER LED indicator.

A green LED indicating that power is being provided to the unit.
5. N.O./N.C. Toggle switch.

The N.O./N.C switch acts to invert the shutter operation. The position of this switch determines shutter status BEFORE a trigger signal is received by VDM1000. In the N.C. position the shutter will be activated open by an input pulse signal. In the N.O. position the shutter will be activated closed.
6. ADDRESS Select switch.

Rotation of the 8-position octal rotary switch selects the active RS-232C address of the unit. See ADDRESS Select under GENERAL CHARACTERISTICS.

Figure 1: VDM1000 Front Panel Operator Controls

VDM1000 Rear Panel Operator Controls

Please Refer to Figure 2:

1. PULSE INPUT BNC.

Allows control of the shutter exposure and frequency from a TTL signal source. The pulse duration determines the shutter exposure interval. The frequency of the signal presented to this input determines the frequency of shutter exposures. This input can be set active-high or active-low by FUNCTION switch A. See FUNCTION Select under GENERAL CHARACTERISTICS.
2. SYNC OUTPUT BNC.

This output is for shutters equipped with the Electronic Synchronization System option. The shutter's internal sync circuit sets the BNC output to an active state when the sync circuit becomes active. The output goes active when the shutter reaches 80% of full open, and goes to the inactive state when the shutter reaches 20% closed. The front panel SYNC LED illuminates when the shutter's electronic sync is active. This output can be disabled with FUNCTION switch E. The SYNC output can be set active-high or active-low by FUNCTION switch B. See FUNCTION Select under GENERAL CHARACTERISTICS.
3. ON/OFF Power Switch.

Power switch - " 0 " is OFF, " 1 " is ON
4. DC POWER Connector.

2 mm jack for power input. Center terminal is PLUS (+).
5. SHUTTER Output.

A 5-pin SwitchCraft female push-lock type receptacle mates with the 5-pin SwitchCraft male plug of the 510A (3 meter) interconnect cable included with the unit. Pin-out as follows, wire colors indicate 510A cable and shutter wiring layout, respectively:

Connector	Description	Shutter	510A
Pin 1	Shutter Actuator Drive Output	Red	Red
Pin 2	Shutter Actuator Drive Output	Brown	Black
Pin 3	+5.0 VDC Power Supply Output	Blue	White
Pin 4	SYNC Ground	Green	Green
Pin 5	SYNC Detector Transistor Input	Yellow	Orange
Shell	Shutter Ground	Black	Drain

Table 1: 5-Pin SwitchCraft Female Receptacle Pin-Out

Figure 2: VDM1000 Rear Panel Operator Controls and I/O

VDM1000 Right Hand Panel Operator Controls

Please refer to Figure 3.

1. PULSE DURATION: An 8-position octal switch that allows the selection of different pulse voltage durations in units of milliseconds (ms). See PULSE DURATION Select under GENERAL CHARACTERISTICS.

| | Pulse Duration Octal Switch Locations | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode of Operation | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| | | | | | | | | | |
| Uni-stable, low energy | $3 / 3$ | $6 / 6$ | $10 / 6$ | $15 / 8$ | $20 / 10$ | $25 / 12$ | $30 / 15$ | $35 / 18$ | (drive/return) |
| Uni-stable, high energy | $20 / 10$ | $30 / 15$ | $40 / 20$ | $50 / 25$ | $60 / 30$ | $70 / 40$ | $80 / 50$ | $90 / 60$ | (drive/return) |
| | | | | | | | | | |
| Bi-stable, low energy | $3 / 3$ | $6 / 6$ | $10 / 10$ | $15 / 15$ | $20 / 20$ | $25 / 25$ | $30 / 30$ | $35 / 35$ | (drive/return) |
| Bi-stable, high energy | $20 / 20$ | $30 / 30$ | $40 / 40$ | $50 / 50$ | $60 / 60$ | $70 / 70$ | $80 / 80$ | $90 / 90$ | (drive/return) |
| Return Disable, low energy | 3 | 6 | 8 | 10 | 12 | 15 | 20 | 25 | (drive only) |
| Return Disable, high energy | 20 | 25 | 30 | 35 | 50 | 70 | 90 | 120 | (drive only) |

Table 2: VDM1000 Octal Switch Pulse Duration Settings
2. FUNCTION Switches: Six edge actuated piano-DIP slide switches.
a. Switch \mathbf{A} is used to select the active state of the PULSE INPUT BNC connector.
b. Switch B is used to select the active state of the SYNC OUTPUT BNC connector. See FUNCTION Select under GENERAL CHARACTERISTICS.
c. Switch \mathbf{C} allows the user to select between uni-stable and bi-stable modes for the NS series shutters. In the upper position switch \mathbf{C} selects the bi-stable mode.
d. Switch D allows the user to disable the Return Driver circuit. CS, LS, VS, and XRS series shutters do not require the Return Driver circuit, so when driving these types be sure to disable the return circuit. In the upper position switch \mathbf{D} disables the return driver while the lower position enables the drive circuit for NS series shutters.
e. Switch \mathbf{E} allows the user to disable the electronic synchronization circuit. In the UP position it disables the electronic sync, which then shuts off the infrared emitter internal to the shutter, which in turn disables the SYNC OUTPUT.
f. Switch \mathbf{F} is used to select the proper pulse energy for the shutter being driven. Unless otherwise instructed by the actual shutter type used, switch to the HIGH (up) position for 35 mm aperture and larger types, switch to the LOW (down) position for all other shutter types. See chart below and in FUNCTION Select section of GENERAL CHARACTERISTICS.
A summary of the DIP Switch FUNCTION settings is provided below.

	Position		
Function	DIP Switch	Lower	Upper
PULSE INPUT	A	active-low	active-high
SYNC OUTPUT	B	active-low	active-high
Bi-stable Mode	C	disabled	enabled
Return Driver	D	enabled	disabled
SYNC Sensor	E	enabled	disabled
Pulse Energy	F	$25 \mathrm{~mm} \&$ under	35 mm \& over

Table 3: FUNCTION DIP Switch Settings

Please see the table below for recommended function \& octal switch settings for all available shutter series.

Shutter Series	Function Switch ${ }^{1}$						Octal Switch Pulse Duration
	A^{2}	B ${ }^{2}$	C	D	E	F	
CS25	N/A	N/A	Down	Up	Down	Down	5 (15 msec)
CS35	N/A	N/A	Down	Up	Down	Up	0 (20 msec)
CS45	N/A	N/A	Down	Up	Down	Up	$1(25 \mathrm{msec})$
CS65	N/A	N/A	Down	Up	Down	Up	$4(50 \mathrm{msec})$
CS90	N/A	N/A	Down	Up	Down	Up	7 (120 msec)
DSS10	N/A	N/A	Up	Down	Down	Down	$2(10 / 10 \mathrm{msec})^{3}$
DSS20	N/A	N/A	Up	Down	Down	Down	$5(25 / 25 \mathrm{msec})^{3}$
DSS25	N/A	N/A	Up	Down	Down	Down	$7(35 / 35 \mathrm{msec})^{3}$
LS2	N/ \mathbf{A}^{2}	N/A	Down	Up	Down	Down	0 (3 msec)
LS3	N/A	N/A	Down	Up	Down	Down	0 (3 msec)
LS6	N/A	N/A	Down	Up	Down	Down	0 (3 msec)
NS15B	N/A	N/A	Up	Down	Down	Down	$1(6 / 6 \mathrm{msec})^{3}$
NS25B	N/A	N/A	Up	Down	Down	Down	$3(15 / 15 \mathrm{msec})^{3}$
NS25S	N/A	N/A	Down	Down	Down	Down	$3(15 / 8 \mathrm{msec})^{3}$
NS35B	N/A	N/A	Up	Down	Down	Up	$0(20 / 20 \mathrm{msec})^{3}$
NS45B	N/A	N/A	Up	Down	Down	Up	$1(30 / 30 \mathrm{msec})^{3}$
NS65B	N/A	N/A	Up	Down	Down	Up	$2(40 / 40 \mathrm{msec})^{3}$
TS2S	N/A	N/A	Down	Down	Down	Down	0 (3 msec)
TS6B	N/A	N/A	Up	Down	Down	Down	$0(3 / 3 \mathrm{msec})^{3}$
VS14	N/A	N/A	Down	Up	Down	Down	1 (6 msec)
VS25	N/A	N/A	Down	Up	Down	Down	$2(8 \mathrm{msec})$
VS35	N/A	N/A	Down	Up	Down	Up	0 (20 msec)
XRS1	N/A	N/A	Down	Up	Down	Down	0 (3 msec)
XRS6	N/A	N/A	Down	Up	Down	Down	1 (6 msec)
XRS14	N/A	N/A	Down	Up	Down	Down	7 (25 msec)

Table 4: Function \& Octal Switch Settings for All Available Shutter Series

[^0]

Figure 3: VDM1000 Right Hand Panel Operator Controls

Notes

Operating Basics

Refer to the section describing the Initial Operation and Testing for initial preparation to put the VDM1000 into operation.

Function Switches

There are six piano-DIP slide switches located at the right side panel and labeled FUNCTION. For specific functions see FUNCTION Select under GENERAL CHARACTERISTICS.
The switch actuators can be moved to the up or down position with a small non-metallic tool.
Be sure the power is off and disconnected from the unit before attempting to change the FUNCTION switch settings.

1. Switches A and \mathbf{B} allow the user to select the active state of the BNC input and the BNC output, respectively. Switch A must be in lower (active-low) position to activate the input from a remote activate cable such as the 710R (handheld) or the 710R/F foot activated.)

CAUTION

Do not connect a 710R/F to the SYNC OUTPUT BNC. This will damage the SYNC OUTPUT.
2. Switch \mathbf{C} is used to select either uni-stable or bi-stable mode for NS Series shutters.
3. Switch \mathbf{D} is used to enable or disable the RETURN DRIVER circuit.

Ne branchez pas le câble 710R ou le 710R/F aux connecteurs des sorties BNC de l'appareil, car cela va endommager le circuit de la sortie.
4. Switch \mathbf{E} will allow the user to disable the electronic synchronization circuit. Slide switch to the up position to disable the electronic synchronization circuit. This shuts off the infrared emitter internal to the shutter, which in turn disables the SYNC OUTPUT BNC.
5. Switch \mathbf{F} selects HIGH/LOW pulse energy. HIGH energy is required to operate the 35 mm and larger aperture shutters. In the down (Lower) position the pulse energy is selected LOW. When the switch actuator is in the up (Upper) position, the pulse energy is selected HIGH.

CAUTION

PRUDENCE

The HIGH energy setting must be used for only the 35 mm and larger aperture shutters. Use the LOW position for all other UNIBLITZ shutters. Use of the HIGH position for shutter apertures smaller than 35 mm will damage the shutter used and will void the limited warranty.

Le réglage d'énergie d'impulsion "HIGH" ne doit être utilisé que pour les obturateurs d'un diamètre de 35 mm ou plus. Veuillez utiliser le réglage "LOW" pour tous les autres obturateurs Uniblitz. L'utilisation du réglage "HIGH" pour des obturateurs d'un diamètre plus petit que 35 mm va endommager l'obturateur et annuler la garantie limitée de l'obturateur.

RS-232C Operation

The VDM1000 inputs can be controlled via an RS-232C computer serial signal (COM port). From a computer's RS-232C serial port, connect a cable such as the 810RJ (not supplied) or a user-constructed cable with connections as enumerated in the INPUT SPECIFICATIONS to the unit's RS-232C interface. The RS-232 input is configured in the null modem configuration.
Connect the Tx (transmit) from the host to the Rx (receive) on the VDM1000 control unit. All other lines are not used except for the Ground connection.
When using the 810RJ cable, the 910RJF adapter is required to connect the VDM1000 to the host computer. The 910RJF adapter is included as part of the 810RJ cable assembly.

If the host contains a $25-\mathrm{Pin}$ D-sub or an 8 -Pin Mini-DIN, check the computer's user manual to find the proper corresponding pin-outs. A cable will need to be constructed or a proper adapter purchased to connect the $\mathbf{8 1 0 R J}$ to the host. In most cases the corresponding 25 -Pin D-Sub pin out and MAC 8-Pin Mini-DIN are as follows:

Function	Name	RJ45 Input	RJ45 Output	IBM DB-9M	IBM DB-25M	MAC Mini-DIN-8F
Rx	Receive Data	5	5	2	3	5
Tx	Transmit Data	6	6	3	2	3
GND	Signal Ground	4	4	5	7	4

Table 5: VDM1000 RS-232C Pin-Outs

All other pins are not used. Be sure to connect the Tx pin (Pin 3) from the IBM 9-Pin D-Sub or Pin 2 from the 25-Pin D-Sub male connector to the Rx pin (Pin 5) of the VDM1000 RJ45 INPUT jack for proper operation. Connect all other functions as indicated above.

By sending the proper commands, the unit will respond by activating the proper function. The RS-232C Test Program listed below will allow operation of the VDM1000 from the computer keyboard.

Daisy-Chain Configuration

Up to eight VDM1000 units can be daisy-chained together through the same serial port using a Model 810RJ cable for each controller in the chain. Figure 4 illustrates connecting two controllers from a single serial port. Once connected, each unit will require a unique address in the chain. This is accomplished by adjusting the octal switch beneath the Dual RJ45 connector on the front panel to the desired address. See ADDRESS Select under GENERAL CHARACTERISTICS in the SPECIFICATIONS section for a complete listing of the command range for each octal switch position. The specific local command range set will decode commands sent via the serial port. A set of global commands is also available to control all units connected to the serial port.

Figure 4: VDM1000 Shutter Driver Daisy-Chain Cable Configuration

The following is a test program written to test the input commands to the RS-232C interface of the VDM1000 controller. This program and LabView programs (not listed) are available by downloading from the RESOURCES section of our web site (www.uniblitz.com), request via email (vincentassociates@uniblitz.com), or calling (800) 828-6972. Other programs may be available, please contact technical support for further information.

REM PROGRAM TO SEND DECIMAL COMMANDS TO RS232 SERIAL INTERFACE. REM WRITTEN BY RICHARD ST.LOUIS, VINCENT ASSOCIATES.
REM 1ST VERSION 3/26/2008

CLS 0
$\mathrm{K}=-1$
WHILE K
OPEN "COM1:9600,N,8,1,CS0,DS0" FOR RANDOM AS \#1
$J=64$
C\$ = "X"
MENU: PRINT
PRINT
PRINT
PRINT "WAITING FOR KEYSTROKE COMMAND "
PRINT "TYPE:"
PRINT " VDM1000 "
PRINT " --------- "
PRINT " O-OPEN Shutter "
PRINT " C-CLOSE Shutter "
PRINT " Y - SYNC State Check "
PRINT
PRINT " S - SET Octal Switch Address "
PRINT " (Current Decimal Range:"; J - 1; "-"; J + 1; ")"
PRINT " (Current Octal Address Value = "; C\$; ")"
PRINT
PRINT " Q-QUIT Program "
PRINT
PRINT

START: A\$ = INKEY\$
IF A\$ = "O" OR A\$ = "o" THEN
PRINT \#1, CHR\$(J);
PRINT "SHUTTER OPEN COMMAND SENT" GOSUB TIMEOUT
GOTO MENU
ELSEIF A\$ = "C" OR A\$ = "c" THEN
PRINT \#1, CHR\$(J + 1);
PRINT "SHUTTER CLOSE COMMAND SENT"
GOSUB TIMEOUT
GOTO MENU

ELSEIF A\$ = "Y" OR A\$ = "y" THEN PRINT \#1, CHR\$(J - 1);
PRINT "SYNC State Check COMMAND SENT" GOSUB TIMEOUT GOTO MENU
ELSEIF A\$ = "Q" OR A\$ = "q" THEN K = 0
PRINT "PROGRAM TERMINATED"
ELSEIF A\$ = "S" OR A\$ = "s" THEN INPUT "ENTER OCTAL ADDRESS 0-7 or X: ", B\$ GOSUB ADDRESS GOTO MENU
ELSE GOTO START
END IF
WEND
END
TIMEOUT: FOR I = 1 TO 100000: NEXT I
CLS 0
RETURN
ADDRESS: IF B\$ = "X" OR B\$ = "x" THEN

```
\[
J=64
\]
\[
C \$=" X "
\]
ELSEIF B\$ = "0" THEN
\[
J=128
\]
C\$ = "0"
ELSEIF B\$ = "1" THEN
\[
J=144
\]
C\$ = "1"
ELSEIF B\$ = "2" THEN
\[
J=160
\]
\[
\mathrm{C} \$=\text { "2" }
\]
ELSEIF B\$ = "3" THEN
\[
J=176
\]
C\$ = "3"
ELSEIF B\$ = "4" THEN
\[
J=192
\]
\[
\mathrm{C} \$=4 "
\]
ELSEIF B\$ = "5" THEN
\[
J=208
\]
C\$ = "5"
ELSEIF B\$ = "6" THEN
\[
J=224
\]
C\$ = "6"
ELSEIF B\$ = "7" THEN
```

$$
J=240
$$

C\$ = "7"
ELSE J = 64
C\$ = "X"
END IF
PRINT "STARTING DECIMAL \# =", J - 1
GOSUB TIMEOUT
CLS 0
RETURN

Trigger Cautions and Trouble Shooting Tips

1. The VDM1000 system's capability can be greatly enhanced by external control as described previously, however, extreme care must be taken to ensure that high voltages (see SPECIFICATIONS) are not inadvertently switched into external control inputs. Also, note that large negative voltages can cause irreparable damage to the unit's internal circuitry. Exercise extreme caution.
2. As noted previously, a visual inspection of a fuse is usually NOT an adequate test to determine if a fuse failure has occurred. Use a DMM (Digital Multi-Meter) or equivalent test device to determine fuse continuity.
3. Particular shutter units respond to different minimum pulse widths. For example, a standard VS25 shutter (with Teflon shutter blades) has a minimum exposure pulse of 6 msec . If the exposure or pulse width presented to the VDM1000's PULSE INPUT is less than 6 msec , the shutter may not open fully. If the unit still does not operate properly, when using the proper pulse width, please notify Vincent Associates immediately.
4. When operating shutters with a larger aperture than 25 mm (35 mm or larger), please be sure that the FUNCTION slide switch \mathbf{F} is positioned to the Upper position. Failure to make this change will result in the shutter not opening fully when triggered or opening fully and immediately returning to the closed position thereby risking failure or loss of capture.
5. When operating shutters with a 25 mm aperture or smaller, please be sure that FUNCTION slide switch \mathbf{F} is in the Lower position. Use of the Upper position for 25 mm and smaller aperture devices could cause irreparable damage to the shutter used and WILL void the shutter's limited warranty.

Dimensions

The overall dimensions of the VDM1000 Shutter Controller and Power Supply are shown below in Figures 5 and 6, respectively.

Figure 5: Overall VDM1000 Dimensions

Figure 6: Overall PS36 Power Supply Dimensions

Maintenance

Proper care and maintenance of the unit should be taken as with any electronic instrument.
With the exception of line and shutter fuse replacement, there are no user-serviceable parts outside or inside of the VDM1000.
There is no service to be performed by the user other than exterior inspection for visible damage of the case and line cord and exterior cleaning.

Although the stability of the timing and drive voltage is assured and calibrated prior to shipment, it may become necessary to make some minor adjustments to the operating systems of the VDM1000 over time.

WARNING

It is highly recommended that if you suspect a problem with your unit, that it be returned to the factory for proper adjustments and calibration. The unit's complicated circuitry will be damaged and/or not function as specified if inadvertently adjusted improperly.

AVERTISSEMENT

Il est fortement recommandé de retourner l'appareil à l'usine si l'on suspecte un problème quelconque, afin qu'une callibration et que des ajustements appropriés y soient effectués.

General Care

Perform routine inspection of the VDM1000 on a regular basis.
Inspect the outer case for any signs of visible damage.
Pay particular attention to the condition of the power supply line cords. If there are any signs of damage or deterioration, replace immediately with an approved line cord.

Follow the Exterior inspection and Cleaning Procedures below.

Inspection and Cleaning

Inspection - Exterior

Inspect the outside of the VDM1000 for damage, wear, and missing parts. A device that appears to have been dropped or shows other signs of exterior damage should be checked thoroughly to verify correct operation and performance. If damage is suspected, please return the unit to the factory for repair - there are no user-serviceable parts.

Cleaning Procedure - Exterior

1. Remove loose dust on the outside of the VDM1000 with a lint free cloth.

To prevent getting moisture inside the unit during external cleaning, use only enough liquid to dampen the cloth or applicator.

PRUDENCE

Lors d'un nettoyage fin , afin d'éviter d'introduire de l'humidité à l'intérieur de l'appareil, n'utilisez que le strict nécessaire de liquide pour humecter le linge ou l'applicateur utilisé pour le nettoyage.
2. Remove remaining dirt with a lint free cloth dampened in a general purpose detergent-andwater solution. Do not use abrasive cleaners.
3. Avoid the use of chemical cleaning agents that might damage the painted finish of the controller's housing. Use only a dry, lint free cloth to wipe down the unit. DO NOT USE ALCOHOL TO CLEAN THE PANELS - THIS WILL REMOVE THE SCREEN PRINTING FROM THE PANELS. Before using any other type of cleaner, consult your factory representative.

Inspection - Interior

Do not attempt to open the case of the VDM1000. There are no other user-serviceable parts inside the case.

Cleaning Procedure - Interior

Do not attempt to open the case of the VDM1000. There are no other user-serviceable parts inside the case.

Specifications

System Characteristics

Name	Description
Repeat Exposure	- 10 ms minimum between exposures for 25 mm (aperture diameter) and smaller shutters - 20 ms minimum for 35 mm aperture and larger shutters
Shutter Drive	- Continuously variable frequency of exposures from DC to the shutter's maximum rate - Maximum peak pulse power: 91 W - Pulse voltage: +33 VDC - Pulse current: 2.75 A (test conditions: standard 5 Volt, 12 ohm coil cycled with 20 ms exposure at 5 Hz)
Power Supply	- External tabletop switching supply - Output: +36VDC, 1.83A, 66W - Input: 100-240 VAC, $50 / 60 \mathrm{~Hz}, 1.5 \mathrm{~A}$ - IEC type inlet - Output: 2 mm DC plug, Center is positive

External Input Characteristics

Name	Description					
PULSE INPUT (BNC) Rear Panel	- Active-low or active-high selectable with FUNCTION switch A - Input impedance: 4.7K ohms - Maximum source current: $100 \mu \mathrm{~A}$ - Maximum sink current: $1 \mu \mathrm{~A}$ - Minimum pulse width determined by applicable shutter - Maximum pulse width unlimited - TTL compatible: - Minimum high-level: +2.0 VDC - Maximum low-level +0.8 VDC					
$\begin{aligned} & \hline \text { RS-232C INPUT } \\ & \text { (Upper RJ45 Jack) } \\ & \text { Front Panel } \end{aligned}$	- Baud rate 9600 - 8 Data bits - 1 Stop bit - No Parity - No flow control - "Null-modem" type input - 3 input commands recognized - 2 output read-backs available (requires SYNC sensor of applicable shutter to be present) - 1 global, 8 local address locations for commands (see ADDRESS Select specification for octal-switch settings of local address locations) - Command transmission time: 0.94 ms . See sample RS232 test program.					
RS-232 Global Address Code Locations						
Commands	Decimal	HEX	Octal	Binary	ASCII	
Check-Sync	63	3F	077	00111111	?	(receive data)
Open	64	40	100	01000000	@	(receive data)
Close	65	41	101	01000001	A	(receive data)
Indicates SYNC On	74	4A	112	01001010	J	(transmit data)
Indicates SYNC Off	75	4B	113	01001011	K	(transmit data)

External Output Characteristics

Name	Description
SYNC OUTPUT	• Active-low or active-high selectable with FUNCTION switch
(BNC)	B
Rear Panel	• Source impedance: 1 K ohms
	• Maximum source current: 6.8 mA
	• Maximum sink current: 25 mA
	• Maximum low-level: +0.5 VDC
	• Minimum high-level: +4.5 VDC . This output becomes
	active when applicable shutter is equipped with electronic

RS-232C OUTPUT	• Baud rate 9600	
(Lower RJ45 Jack)	\bullet 8 Data Bits	
Front Panel	\bullet 1 Stop Bit	
	\bullet No Parity	
	\bullet No flow control	
	\bullet DTE type output	
	\bullet This output provided for daisy-chain application of up to 8	
	VDM1000 (or VCM/VRM series) controllers.	

General Characteristics

General Characteristics (cont'd)

General Characteristics (cont'd)

Name	Description
Power Requirements	+36 VDC, 66 Watts; accessible with 2 mm jack, located on rear panel.
Fuse Requirements (Fuses are internal to unit)	one 2 Amp "T" Slo-Blo (Nano SMT) for +36 VDC one 0.75 Amp "T" Slo-Blo (Nano SMT) for Shutter coil one 0.25 Amp "F" fast-acting (1206 SMT) for +5V Sync
Operating Temperature	$5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
Storage Temperature	$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Relative Humidity	80\% maximum
Altitude	up to 2000 m (6562 ft), Indoor use
Pollution	Degree 2
Over-voltage	Category II
Size (HWD)	$1.96 \times 4.34 \times 7.23$ in ($49.9 \times 110.3 \times 183.6 \mathrm{~mm}$)
Weight	Controller - 1.2 lbs (0.54 kg) Power Supply - 1.1 lbs (0.50 kg)
Supplied Accessories with VDM1000	- 510A shutter cable (5-pin male SWC to 5-pin female SWC) - +36 VDC external power supply - (2) each AC line cord, IEC type, North America and Europe - User's Manual (Disk) or USB Flash Drive - Checklist

General Characteristics (cont'd)

Name	Description
Optional Accessories	- 710A shutter cable (7-pin female WPI to 5-pin male SWC) - 710R remote hand-held trigger cable (used with activelow BNC) - 710R/F remote foot switch trigger cable (used with active-low BNC) - 810RJ RS-232C interconnect serial cable (RJ45 connections) - 910RJF female DB89 to RJ45 adapter (used with 810RJ and PC) - 910RJM male DB9 to RJ45 adapter (used with 810RJ and VMM driver) - 710A-S5 Shutter Adapter Cable (7- pin female WPI to 5pin make SWC)

Applicable Certifications (CE/UL/CSA)

(The VDM1000 Shutter Driver has successfully completed and is compliant with the following tests performed at MET Laboratories, Inc.)

Name Description
Directive(s)
Applied Standards:

EMC, LOW VOLTAGE, UL, CSA
Application of Council Directive(s): EMC 89/336/EEC as amended by 92/31/EEC and 93/68/EEC
Standards to which Conformity is Declared: 61326:1997 + A1:1998 + A2:2001 + A3:2003 Class A
UL 61010-1/CSA C22.2 No. 61010-1, Second Edition:
Safety of Electrical Equipment for Measurement, Control and Laboratory Use, Rev. October 28, 2008.
Title 47 of the Code of Federal Regulations (CFR), Part 15 Subpart B for a Class A digital device.
15.107 (a) Conducted Emission Limits for a Class A

Digital Device
15.109 (a) Radiated Emission Limits for a Class A

Digital Device
EN 61326-1: 2006, Electrical Equipment for Measurement, Control, and Laboratory Use.

- EN 61000-4-2:2001- Electrostatic Discharge Immunity
- EN 61000-4-3:2006 - Radiated Electromagnetic Field Immunity
- EN 61000-4-4:2004 - Electrical Fast Transient/Burst Immunity
- EN 61000-4-5:2006 - Surge Immunity
- EN 61000-4-11:2004 - Voltage Dips, Interruptions and Variations
- EN 61000-4-6:2007 - Conducted Radio-Frequency Immunity
- CISPR 11:2007 - Radiated Emissions - Class A
- CISPR 11:2007 - Conducted Emissions - Class A

Index

```
+36VDC, 12
```

100-240 VAC. $50 / 60 \mathrm{~Hz}, 9$
100 VAC or $240 \mathrm{VAC}(50 / 60 \mathrm{~Hz}), 12$
1206 SMT, 38
2.0 mm male jack, 10
25-Pin D-sub, 24
25-Pin D-Sub male, 24
35 mm, 37
36VDC, 9
510A, 10, 16, 38
510A shutter interconnect cable, 8,12
5-pin Female, 8
5 -pin female SwitchCraft receptacle, 12
5-pin female to 5-pin male SwitchCraft, 10
5-pin male SwitchCraft connector, 12
5-pin SwitchCraft male, 16
5-pin SwitchCraft female, 16
5-Pin SwitchCraft Female Receptacle Pin-Out, 16

701AR-S5 Shutter Adapter Cable, 39
701A-S5 Shutter Adapter Cable, 39
710A, 9
710A shutter cable, 39
710R, 23
710R remote hand-held trigger cable, 39
710R/F, 23
710R/F remote foot-switch trigger cable, 39

810RJ, 9, 10, 24
810RJ RS-232C interconnect serial cable, 39
8-Pin Mini-DIN, 24
8-position octal switch, 18

910RJF, 24
910RJF female DB9 to RJ45 adapter, 39
910RJM male DB9 to RJ45 adapter, 39
92/31/EEC, 40
93/68/EEC, 40
abrasive cleaners, 31
AC, 11
AC line cord, 38
AC module, 11
active-high, 35, 37
active-low, 35, 37
ADDRESS, 10
ADDRESS Select, 24, 36
ADDRESS SELECT switch, 14
ADDRESS Switch, 36
Altitude, 38
Aluminum enclosure, 9
Applicable Certifications, 40
Applied Standards, 40

Baud rate, 34
bi-stable, 8, 10, 18
bi-stable mode, 23, 37
bi-stable operation, 37
BNC, 9, 10, 16, 18, 23, 34
BNC input, 23
BNC output, 23
calibrated, 31
case, 31
CE, 1, 8, 9, 10, 40
CE/UL/CSA, 1, 8, 10
certifications, 1, 8, 10
CFR, Part 15 Subpart B, 40
Checklist, 38
Check-Sync, 34, 36
chemical cleaning agents, 32
CISPR 11:2007, 40
Cleaning Procedure - Exterior, 31
Cleaning Procedure - Interior, 32
Close, 34, 36
COM port, 24
Commands, 34
Conducted Emission Limits, 40
Conducted Emissions - Class A, 40
Conducted Radio-Frequency Immunity, 40
Cover, 5
CS, 9, 10, 12, 18, 37
CSA, 1, 8, 10, 40
CYCLE WARRANTY, 2
daisy-chain, $9,10,14,24,36$
Daisy-Chain Cable Configuration, 25
Daisy-Chain Configuration, 24
Damage Precautions, 6
Data bits, 34, 35
DC, 5, 9
DC POWER Connector, 16
DC Power Plug, 12

DC Power Supply, 6
defects, 11
Digital Multi-Meter, 28
Dimensions, 29
DIP slide switches, 23
DIP switch, 37
DIP Switch Position, 37
Directive(s), 40
DMM, 28
DRIVER Indicator, 36
DRIVER LED, 12
DRIVER LED indicator, 14
DSS Shutter, 2
DURATION SELECT, 18

ED12DSS driver, 2
Electric Overload, 5
Electric Shock, 5
Electrical Fast Transient/Burst Immunity, 40
electronic sync, 14
electronic synchronization, 9
electronic synchronization circuit, 18, 23
electronic synchronization sensor, 35
electronic synchronization system, 16
Electrostatic Discharge Immunity, 40
EMC, 40
EMC 89/336/EEC, 40
EN 61000-4-11:2004, 40
EN 61000-4-2:2001, 40
EN 61000-4-3:2006, 40
EN 61000-4-4:2004, 40
EN 61000-4-5:2006, 40
EN 61000-4-6:2007, 40
EN 61326-1: 2006, 40
Explosive Atmosphere, 5
exterior cleaning, 31
external control, 28
external control inputs, 28
External Input Characteristics, 34
External Output Characteristics, 35
external power supply, 38
female 5-pin push-lock SwitchCraft connector, 10
flow control, 34, 35
Front Panel controls, 10
Front Panel Operator Controls, 14, 15
FUNCTION, 9, 10, 23, 28
Function \& Octal Switch Settings for All Available Shutter Series, 20
FUNCTION DIP Switch Settings, 19
FUNCTION Select, 12, 16, 37
FUNCTION switch A, 16
FUNCTION switch B, 16
VDM1000 User Manual

FUNCTION switch E, 16
FUNCTION switches, 12, 18, 23
fuse, 9,28
Fuse, 5
Fuse Requirements, 38
fuses, 12

General Characteristics, 36
General Care, 31
General Safety Summary, 5
Getting Started, 8
global address locations, 34
Ground, 5, 24

H-Bridge type shutter driver, 2
high voltages, 28
HIGH/LOW, 23

IBM 9-Pin D-Sub, 24
IEC, 33, 38
Index, 8
infrared emitter, 18, 23
Initial Operation and Testing, 12, 23
Injury Precautions, 5
INPUT, 14
input commands, 34, 36
Input impedance, 34
inspection, 31
Inspection - Exterior, 31
Inspection - Interior, 32
Inspection and Cleaning, 31
internal sync circuit, 16
Introduction, 10

LabView, 25
LED, 10
LIMIT OF LIABILITY, 2
line cord, 31
local address locations, 34
LOW VOLTAGE, 40
LS, 9, 10, 12, 18, 37

MAC 8-Pin Mini-DIN, 24
Maintenance, 31
Maximum low-level, 34, 35
Maximum peak pulse power, 33
Maximum pulse width, 34
Maximum sink current, 34, 35
Maximum source current, 34, 35
minimum exposure pulse, 13,28
Minimum high-level, 34, 35
Minimum pulse width, 34
minimum pulse widths, 28
N.O./N.C. switch, 12
N.O./N.C. Toggle switch, 14

Nano SMT, 38
N-CAS, 8, 10
normally-closed, 9, 10
normally-open, 9, 10
NS series, 10
NS series shutters, 18, 23
NS25S, 13
null modem configuration, 24
null-modem, 34

Octal Rotary Switch, 37
Octal rotary-DIP switch, 36
octal switch, 24
Octal Switch Pulse Duration Settings, 18
octal-switch settings, 34
ON/OFF Power Switch, 16
On/Off switch, 11
On/Off Switch, 5
Open, 34, 36
Operating Basics, 8, 23
Operating Temperature, 38
Operator Controls, 8
Optional Accessories, 39
OUTPUT, 14
Output commands, 36
output readbacks, 34
Overall Dimensions, 29
Overall PS36 Power Supply Dimensions, 30
Over-voltage, 38
Parity, 34
Pollution, 38
POWER, 12
Power Cord, 5
POWER Indicator, 36
Power LED, 11
POWER LED, 12, 14
Power Requirements, 38
Power Source, 6
Power supply, 9
Power Supply, 5, 16, 33
power switch, 11
Preface, 8
Proper Ventilation, 6
PS36, 5, 6, 9, 10, 11, 12
PS36 input power receptacle, 12
Pulse Energy, 37
Pulse current, 33
PULSE DURATION, 18
PULSE DURATION Select, 37
pulse energy, $9,18,23,37$
PULSE INPUT, 10, 13, 28, 34, 37
Pulse Input BNC, 37
PULSE INPUT BNC, 9, 16
Pulse voltage, 33
Radiated Electromagnetic Field Immunity, 40
Radiated Emission Limits, 40
Radiated Emissions - Class A, 40
Rear Panel, 10
Rear Panel Operator Controls, 16
Rear Panel Operator Controls and I/O, 17
receive, 24
Relative Humidity, 38
remote, 23
Repeat Exposure, 33
Return Driver, 37
RETURN DRIVER, 23
Return Driver circuit, 18
RETURN MATERIAL AUTHORIZATION, 2
Right Hand Panel Operator Controls, 18, 21
right-side panel, 10
RJ45, 10, 24
RS-232 Global Address Code Locations, 34
RS-232 Test Program, 26
RS-232C, 9, 10, 24
RS-232C Dual RJ45 female jack, 14
RS-232C Operation, 24
RS-232C OUTPUT, 35
RS-232C Pin-Outs, 24
RS-232C Test Program, 24
Rx, 24

Safety Terms and Symbols, 7
serial COM port, 14
serial port, 10, 14, 24, 36
Shutter, 16
Shutter Drive, 33
shutter interface connector, 8
shutter output, 10
SHUTTER Output, 16
Size, 38
Size - controller, 9
size - power supply, 9
Slo-Blo, 38
solid state synchronization, 12, 14
Source impedance, 35
Specifications, 8, 33
Start Up, 11, 12
Stop bit, 34, 35
Storage Temperature, 38
Surge Immunity, 40
Suspected Failures, 6

Switch A, 18, 23, 37
Switch B, 18, 23, 37
Switch C, 18, 23, 37
Switch D, 18, 23, 37
Switch E, 18, 23, 37
Switch F, 18, 23, 28, 37
SwitchCraft, 8
SYNC, 9,12
SYNC Indicator, 36
SYNC LED, 12, 16
SYNC LED indicator, 14
SYNC Off, 34, 36
SYNC On, 34, 36
SYNC OUTPUT, 18, 35, 37
SYNC OUTPUT (BNC), 36
SYNC OUTPUT BNC, 9, 12, 16, 18, 23
SYNC Sensor, 37
Synchronization, 14
System Characteristics, 33
technical support, 25
Teflon, 28
termination, 10
transmit, 24
Trigger Cautions, 28
Trouble Shooting Tips, 28
TTL, 9, 10, 16, 34

Tx, 24
UL, 1, 8, 9, 10, 40
UL 61010-1/CSA C22.2, 40
uni-stable, $8,10,18$
uni-stable mode, 9,23
uni-stable operation, 37
Upper RJ45 Jack, 34
User's Manual, 38
user-serviceable parts, 31, 32

VDM1000, 5, 8, 10, 12, 14, 16, 18, 23, 24, 25, 28, 31
Vincent Associates, 11
vincentassociates@uniblitz.com, 25
visible damage, 31
Voltage Dips, Interruptions and Variations, 40
VS, 9, 10, 12, 18, 37
VS25, 28
warranty, 2, 28
Weight, 38
weight (controller), 9
weight (power supply):, 9
Wet/Damp Conditions, 5
www.uniblitz.com, 25
XRS, $9,10,12,18,37$

[^0]: ${ }^{1}$ Switches A, B and E do NOT affect shutter performance
 ${ }^{2}$ N/A denotes Not Applicable
 ${ }^{3}$ Open/Close pulse duration

